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Abstract. In this paper, we first introduce the concepts of G-systems,
quotient G-systems and isomorphism theorems on G-systems of n-ary
semihypergroups. Also we consider the Green’s equivalences on G-systems
and further investigate some of their properties. A number of n-ary semi-
hypergroups are constructed and presented as examples in this paper.
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1. Introduction

The concept of Green relation introduced by Green [9] and have played a
fundamental role in the development of semigroup theory. The Green’s rela-
tions provide the necessary tools for using similar arguments on the monoid.
The Green’s relations are well known, and presented in deep detail in several
places. The concept of an n-group was introduced by Dörnte in [7]. This con-
cept is a natural generalization of a group. Since then there are numbers of
papers concerning various n-ary algebras in the literature. It is noted that the
algebraic hyperstructures are suitable generalizations of the classical algebraic
structures. In a classical algebraic structure, the composition of two elements
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is an element, while in an algebraic hyperstructure, the composition of two
elements is not necessarily an element but is a system. The notion of the
hypergroup was introduced in 1934 by Marty [13] at the 8th Congress of Scan-
dinavian Mathematicians. He then published some notes on hypergroups,using
them in different contexts such as algebraic functions,rational actions, non com-
mutative groups. Since then, hundreds of research papers and several mono-
graphs have been published in this topic and several kind of hypergroups have
been particularly studied, such as regular hypergroups, reversible regular hy-
pergroups, canonical hypergroups, cogroups, cyclic hypergroups, associativity
hypergroups, for example see ([2] and [3]). ( the monograph by P. Corsini and
V.Leoreanu )

A recent monograph on hyperstructures [5] points out on their applications
in fuzzy and rough set theory, cryptography, codes, automata, probability, ge-
ometry, lattices, binary relations, graphs and hypergraphs. Moreover, Davvaz
and Vougiouklis [6] have established a connection between the two do mains in
the form of an extension of the concept of n-ary groups to the concept of n-ary
hypergroups. They determined some connections between this hypergroupoid
and Ivo Rosenberg�s hypergroupoid associated with a binary relation. In [4]
Cristea and Stefanescu, associated a hypergroupoid (H,⊗ρ) with an n-ary re-
lation ρ defined on a non-empty set H.The n-ary hyperoperations studied by
many researchers, for example, see [2, 3, 4, 6, 10, 11, 12, 14, 15].

These Green’s relations on a semigroup were first defined and studied by
Green [9] dated back to 1951. These Green’s relations on a semigroup played a
fundamental role in the development of semigroup theory. In particular, Chin-
ram and Siammai have considered and studied extensively the Green’s relations
on the Γ-semigroups and reductive Γ-semigroups [1]. Also, the Green’s rela-
tions and congruences on n-ary semigroups were studied and are investigated
by Sioson in 1967 [16].

In this paper, we define the left and right G-systems in the context of n-
ary semihypergroups and introduce the concept of regular relation on the G-
systems. Also, we consider the Green’s equivalence relations on the G-systems
and find some of their properties.

2. Basic definition

In this section, we present some definitions concerning the n-ary semihyper-
groups as a generalization of the n-ary semigroups and semigroups.

Let G be a non-empty set and f a mapping f : G × G −→ ℘∗(G), where
℘∗(G) is the set of all non-empty subsets of G. Then, we call f is a binary hyper-
operation on the set G. We denote by Gn the Cartesian product G×G....×G,
where G appears n times. The couple (G, f) is now called a hypergroupoid. For
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any two non-empty subsets G1 and G2 of G, we define

G1 ◦G2 =
∪

g1∈G1,g2∈G2

g1 ◦ g2.

A hypergroupoid (G, f) is called a semihypergroup if for all g1, g2, g3 of G, we
have (g1 ◦ g2) ◦ g3 = g1 ◦ (g2 ◦ g3).

In general, f : Gn −→ ℘∗(G) is called an n-ary hyperoperation on G and we
call (G, f) an n-ary hypergroupoid.(see [3]).

Let G1, G2,...,Gn be a non-empty subsets of G. Then, we define

f(G1, G2, ..., Gn) =
∪

{f(g1, g2, ..., gn) : gi ∈ Gi, i ∈ {1, 2, ..., n}}.

The sequence gi, gi+1, ..., gj+1 will be denoted by gji . For j < i, gji is a empty set.

Definition 2.1. [8] The n-ary hypergroupoid (G, f) is called an n-ary semi-
hypergroup if for any i, j ∈ {1, 2, ..., n} and g2n−1

1 ,

f(gi−1
1 , f(gn+i−1

i ), g2n−1
n+i ) = f(gi−1

1 , f(gn+j−1
j ), g2n−1

n+j ).

We call G an n-ary semihypergroup with identity if there is an element e ∈ G

such that
x ∈ f

(
e(i−1), x, e(n−i)

)
.

Let (G, f) be an n-ary semihypergroup and H be a non-empty subset of G.
Then, H is an n-ary subhypergroup of G if it is closed under the n-ary hyperop-
eration f , i.e., for every (h1, h2, ..., hn) ∈ Hn implies that f(h1, h2, ..., hn) ⊆ H.

The n-ary semihypergroup (G, f) with the equation g ∈ f
(
gi−1
1 , xi, g

n
i+1

)
has the solution xi ∈ G for any gi−1

1 , xi, g
n
i+1 ∈ G and 1 ≤ i ≤ n, is called an

n-ary hypergroup.

An n-ary semihypergroup (G, f) is commutative if for all gn1 ∈ G and for any
permutation σ of {1, 2, ..., n}, we have

f(gn1 ) = f(gσ(1), gσ(2), ..., gσ(n)).

Let (G1, f1) and (G2, f2) be two n-ary semihypergroups. Then, a mapping
φ : G1 −→ G2 is called a homomorphism if for all xn1 ∈ G1 we have

φ(f1(x1, x2, ..., xn)) = f2(φ(x1), φ(x2), ..., φ(xn)).

when G1 and G2 are n-ary semihypergroups with a scaler identity, φ(e1) = e2.

The following examples are easy examples of n-ary hypergroup.
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Example 2.2. Let (G,+) be a semihypergroup and f an n-ary hyperoperation
on G defined by

f(gn1 ) =

n∑
i=1

gi, ∀gn1 ∈ G.

Then, we can verify that (G, f) is an n-ary semihypergroup.

Example 2.3. Let G be a group and < x, y > a subgroup generated by x, y.
Define

f(g1, g2, ..., gn) =< g1, g2, ..., gn >,

on G. Then, one can verify that (G, f) is an n-ary hypergroup.

Example 2.4. Let G be a semigroup and N a normal subsemigroup of G. For
all gn1 ∈ G, define f(g1, g2, ..., gn) = g1g2...gnH. Then, obviously, (G, f) is an
n-ary semihypergroup.

Example 2.5. Let D be an integral domain and F be its field of fractions.
Denote by U the group of the invertible elements of D. Define the following
n-ary hyperoperation on F/U . For all gi, with 1 ≤ i ≤ n,

f(g1, g2, ..., gn) = {g : ∃un1 ∈ Un, g = u1g1 + u2g2 + ...+ ungn}.

Then, we can easily verify that (F/U, f) is an n-ary semihypergroup.

We now construct the following non-trivial n-ary semihypergroups.

Example 2.6. Let V be a vector space over an ordered field F and x1, x2, ..., xn ∈
V . Then, we define

f(x1, x2, ..., xn) = {λ1x1 + λ2x2 + ...+ λnxn : λi > o,Σn
i=1λi = 1} .

Hence, (V, f) is an n-ary semihypergroup.

Example 2.7. Let G be a semigroup and {Ag}g∈G be a collection of non-empty
distinct sets and S =

∪
g∈GAg. For every x1, x2, ..., xn ∈ S, we define

f(x1, x2, ..., xn) = Ag1g2,...,gn ,

where xi ∈ Agi for some 1 ≤ i ≤ n. Then, S is an n-ary semihypergroup.

3. G-systems and regular relations

In this section, we define the G-systems, the regular relations and prove the
isomorphism theorems for G-systems.

Let (G, f) be an n-ary semihypergroup with identity and X be a non-empty
set. We say that X is a left G-system if there is an action h : Gn−1 ×X −→ X

with the properties:

h
(
gn−1
1 , h

(
un−1
1 , x

))
= h

(
f(gn−1

1 , u1), f(g
n−1
1 , u2), ..., f(g

n−1
1 , un−1), x

)
h
(
en−1, x

)
= x,
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for every x ∈ X and g2n−1
1 , un−1

1 ∈ G.

Dually, we call a non-empty set X is a right G-system if there is an action
X ×Gn−1 −→ X,

h
(
h
(
x, un−1

1

)
, gn−1

1

)
= h

(
x, f

(
un−1
1 , g1

)
, f

(
un−1
1 , g2

)
, ..., f

(
un−1
1 , gn−1

))
.

h
(
x, en−1

)
= x.

We first state the G-systems and discuss the G-systems.

Example 3.1. Let G be an n-ary semihypergroup with identity and X be an
n-ary sub-semihypergroup of G. We define

h : Gn−1 ×X −→ X.

(gn−1
1 , x) 7−→ e,

where e is an identity and gn−1
1 ∈ G and x ∈ X. Then, X is a G-system.

Example 3.2. Let G =
∪

n≥0An, A0 = {0}, An = [n, n + 1) and X = Z+.
Then, we define

f : Gn −→ P ∗(G)

(gn1 ) 7−→ At,

where t = max{m1,m2, ...,mn} and gi ∈ Ami . Then, (G, f) is an n-ary semi-
hypergroup. Also,

h : Gn−1 ×X −→ X

(gn−1
1 , x) 7−→ max{m1,m2, ...,mn−1, x}.

Then, X is a G-system.

Let G and H be n-ary semihypergroups. Then, we say that X is a (G,H)-
system if it is a left G-system by action h1 : Gn−1 × X −→ X and a right
H-system by action h2 : X ×Hn−1 −→ X and

h2(h1(g
n−1
1 , x), tn−1

1 ) = h1(g
n−1
1 , h2(x, t

n−1
1 )),

where gn−1
1 ∈ Gn−1, tn−1

1 ∈ Hn−1 and x ∈ X.
Let X and Y be left G-systems and h1 : Gn−1 ×X −→ X and h2 : Gn−1 ×

Y −→ Y . Then, a map φ : X −→ Y is a morphism when

φ
(
h1

(
gn−1
1 , x

))
= h2

(
gn−1
1 , φ(x)

)
.

Let Mor(X,Y ) be the set of all G-morphism from X into Y and X, Y are
left G-systems such that h1 : Gn−1 × X −→ X and h2 : Gn−1 × Y −→ Y .
Then, we define

h : Gn−1 ×Mor(X,Y ) −→Mor(X,Y )

(gn−1
1 , φ) 7−→ φ,
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where φ : X −→ Y and φ(x) = h2
(
gn−1
1 , φ(x)

)
. Hence

φ(h1
(
gn−1
1 , x)

)
= h2

(
gn−1
1 , φ(h1

(
gn−1
1 , x)

))
= h2

(
gn−1
1 , h2

(
gn−1
1 , φ(x)

))
= h2

(
gn−1
1 , φ(x)

)
.

This implies that φ ∈Mor(X,Y ). Moreover, we have the following equalities :

h
(
gn−1
1 , h

(
kn−1
1 , φ

))
(x) = h2

(
kn−1
1 , h

(
gn−1
1 , φ

)
(x)

)
= h2

(
kn−1
1 , h2

(
gn−1
1 , φ(x)

))
= h2

(
f
(
kn−1
1 , g1

)
, ..., f

(
kn−1
1 , gn−1

)
, φ(x)

)
.

Then,

h
(
gn−1
1 , h

(
kn−1
1 , φ

))
= h

(
f
(
kn−1
1 , g1

)
, ..., f

(
kn−1
1 , gn−1

)
, φ

)
Hence Mor(X,Y ) is a left G-system.

It is clear that the cartesian product X × Y of a left G1-system X and a
right G2-system Y become (G1, G2)-system by the following definitions:

h1(g
n−1
1 , (x, y)) = (h1(g

n−1
1 , x), y),

h2((x, y), t
n−1
1 ) = (x, h2(y, t

n−1
1 ),

where x ∈ X, y ∈ Y , gi ∈ G1 and tj ∈ G2, for 1 ≤ i ≤ n and 1 ≤ j ≤ n.

Let G be an n-ary semihypergroup and X be a left G-system. A relation ρ

on the left G-system is called left regular if

∀x1, x2 ∈ X, gn−1
1 ∈ G, x1ρx2 =⇒ h

(
gn−1
1 , x1

)
ρ h

(
gn−1
1 , x2

)
,

when X is a right G-system and

∀x1, x2 ∈ X, gn−1
1 ∈ G, x1ρx2 =⇒ h

(
x1, g

n−1
1

)
ρ h

(
x2, g

n−1
1

)
,

then, X is a right regular relation. Now, we simply call a relation ρ is a regular
relation if it is both a left and a right regular relation.

Let X be a left G-system and ρ be a regular relation on X. Then, [X : ρ] =

{ρ(x) : x ∈ X} is a left G-system by the following map:

h : Gn−1 × [X : ρ] −→ [X : ρ](
gn−1
1 , ρ(x)

)
7−→ ρ

(
h
(
gn−1
1 , x

))
.

Let X1 and X2 be left G-systems and φ : X1 −→ X2 be a morphism. Then,
we call a relation ker(φ) = {(x1, x2) ∈ X ×X : φ(x1) = φ(x2)} the kernel of
φ. This relation is obviously a left regular relation.
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In the following theorem, we describe the morphism on a left G-system .

Theorem 3.3. Let G be an n-ary semihypergroup, X be a left G-system and
φ : X1 −→ X2 be a morphism. Then, [X : (kerlφ)] ∼= Imφ.

Proof. Suppose that K = ker(φ) and ψ : [X : K] −→ Imφ defined by
ψ(K(x)) = φ(x). Then the map ψ is well-defined and one to one. Indeed,we
have the following equalities.:

K(x) = K(y) ⇐⇒ φ(x) = φ(y) ⇐⇒ ψ(K(x)) = ψ(K(y)).

On the other hand, we have

ψ
(
h(gn−1

1 ,K(x)
)
= ψ

(
K

(
h(gn−1

1 , x)
))

= φ(h(gn−1
1 , x))

= h
(
gn−1
1 , φ(x)

)
= h

(
gn−1
1 , ψ(K(x)

)
.

This completes the proof. □

The following lemma is a crucial lemma of the morphisms on left G-systems.

Lemma 3.4. Let ρ be a regular relation on a left G-system X and φ : X −→ Y

be a morphism such that ρ ⊆ ker(φ). Then, there is a unique morphism φ :

[X : ρ] −→ Y such that Im(φ) = Im(φ) and φ◦π = φ, where π : X −→ [X : ρ]

is a natural morphism.

Proof. Suppose that φ : [X : ρ] −→ Y defined by φ(ρ(x)) = φ(x), where
x ∈ X. Then, φ is well-defined, since, for all x1, x2 ∈ X

ρ(x1) = ρ(x2) =⇒ (x1, x2) ∈ ρ ⊆ kerφ =⇒ φ(x1) = φ(x2).

Also ψ ◦ π = φ. The uniqueness of φ is clear. □

Let ρ1 and ρ2 be regular relations on the left G-system X, where ρ1 ⊆ ρ2.
By Theorem 3.4, there is a morphism φ : [X : ρ1] −→ [X : ρ2], such that
φ ◦ π1 = π2, where π1 : X −→ [X : ρ1] and π2 : G −→ [X : ρ2] are nutural
maps. The morphism φ is given by

φ(ρ1(x)) = ρ2(x), x ∈ X.

Also, the regular relation ker(φ) on [X : ρ1] given by

kerφ = {(ρ1(x1), ρ1(x2)) ∈ [X : ρ1]× [X : ρ1] : (x1, x2) ∈ ρ2}.

For the regular relations on the left G-system X, we have the following the-
orem.
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Theorem 3.5. Let ρ1 and ρ2 be regular relations on a left G-system X such
that ρ1 ⊆ ρ2. Then,

[ρ1 : ρ2] = {(ρ2(a1), ρ2(a2)) ∈ [X : ρ2]× [X : ρ2] : (a1, a2) ∈ ρ1},

is regular on [X : ρ1] and [[X : ρ1] : [ρ1 : ρ2]] ∼= [X : ρ2].

Proof. The proof is straightforward and is hence omitted.
□

Suppose that X is a (G,G)-system such that h1 : Gn−1 × X −→ X, h2 :

X ×Gn−1 −→ X and ρ is an equivalence relation on X. We define

ρ∗ =
{(
h1

(
gn−1
1 , h2(x, t

n−1
1 )

)
, h1

(
gn−1
1 , h2

(
y, tn−1

1

)))
: gn−1

1 , tn−1
1 ∈ G, (x, y) ∈ ρ

}
.

For the (G,G)-systems, we have the following propositions.

Proposition 3.6. Let G be an n-ary semigroup and X be a (G,G)-system
such that ρ is an equivalence relation on X. Then, ρ∗ is the smallest regular
relation containing ρ.

Proof. It is clear that ρ ⊆ ρ∗. To show that ρ∗ is a left regular, suppose that
(x, y) ∈ ρ∗ and kn−1

1 ∈ G. Hence there are gn−1
1 , tn−1

1 ∈ G and x, y ∈ X such
that

x = h1
(
gn−1
1 , h2(x, t

n−1
1 )

)
, y = h1

(
gn−1
1 , h2(y, t

n−1
1 )

)
.

Also, we deduce the following equalities:

h1
(
kn−1
1 , x

)
= h1

(
kn−1
1 , h1

(
gn−1
1 , h2(x, t

n−1
1 )

))
= h1

(
f(kn−1

1 , g1), ..., f(k
n−1
1 , gn−1), h2(x, t

n−1
1 )

)
and

h1
(
kn−1
1 , y

)
= h1

(
kn−1
1 , h1

(
gn−1
1 , h2(y, t

n−1
1 )

))
= h1

(
f(kn−1

1 , g1), ..., f(k
n−1
1 , gn−1), h2(y, t

n−1
1 )

)
.

This implies that (h1(k
n−1
1 , x), h1(k

n−1
1 , y)) ∈ ρ∗.

By using the same arguments, we obtain the following equalities:

h2
(
x, kn−1

1

)
= h2

(
h1

(
gn−1
1 , h2

(
x, tn−1

1

))
, kn−1

1

)
= h2

(
h2

(
h1

(
gn−1
1 , x

)
, tn−1

1

)
, kk−1

1

)
= h2

(
h1

(
gn−1
1 , x

)
, f

(
tn−1
1 , k1

)
, f

(
tn−1
1 , k2

)
, ..., f

(
tn−1
1 , kn−1

))
.

and
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h2
(
y, kn−1

1

)
= h2

(
h1

(
gn−1
1 , h2

(
y, tn−1

1

))
, kn−1

1

)
= h2

(
h2

(
h1

(
gn−1
1 , y

)
, tn−1

1

)
, kk−1

1

)
= h2

(
h1

(
gn−1
1 , y

)
, f

(
tn−1
1 , k1

)
, f

(
tn−1
1 , k2

)
, ..., f

(
tn−1
1 , kn−1

))
,

which implies that (h2
(
x, kn−1

1

)
, h2

(
y, kn−1

1

)
) ∈ ρ∗. Let σ be a left and right

regular containing ρ. Then, for every gn−1
1 , tn−1

1 ∈ G and (x, y) ∈ ρ,(
h1

(
gn−1
1 , h2(x, t

n−1
1 )

)
, h1

(
gn−1
1 , h2(y, t

n−1
1 )

))
∈ σ.

Therefore, ρ∗ ⊆ σ. □

For the equivalences on the G-systems,we have the following proposition.

Proposition 3.7. Let ρ1 and ρ2 be equivalence relations on X. Then,
1. ρ1 ⊆ ρ2 implies that ρ∗1 ⊆ ρ∗2,
2. (ρ1 ∪ ρ2)∗ = ρ∗1 ∪ ρ∗2

Proof. The proof is straightforward and is hence omitted.
□

Proposition 3.8. Let ρ be an equivalence on X and G be an n-ary semigroup.
Then,

ρ◦ =
{
(x, y) ∈ X ×X : ∀gn−1

1 , tn−1
1 ∈ G,

(
h1

(
gn−1
1 , h2(x, t

n−1
1 )

)
, h1

(
gn−1
1 , h2(y, t

n−1
1 )

))
∈ ρ

}
,

is the largest regular relation on X contained in ρ.

Proof. Suppose that (x, y) ∈ ρ◦ and kn−1
1 ∈ G. Then for every gn−1

1 , tn−1
1 ∈ G,

we have (
h1

(
gn−1
1 , h2(x, t

n−1
1 )

)
, h1

(
gn−1
1 , h2(y, t

n−1
1 )

))
∈ ρ.

Hence
h1

(
gn−1
1 , h2(h1

(
kn−1
1 , x

)
, tn−1

1

)
= h1

(
gn−1
1 , h1(k

n−1
1 , h2

(
x, tn−1

1

))
= h1

(
f(gn−1

1 , k1), ..., f(g
n−1
1 , kn−1), h2

(
x, tn−1

1

))
.

In a same way,
h1

(
gn−1
1 , h2(h1

(
kn−1
1 , y

)
, tn−1

1

)
= h1

(
gn−1
1 , h1(k

n−1
1 , h2

(
y, tn−1

1

))
= h1

(
f(gn−1

1 , k1), ..., f(g
n−1
1 , kn−1), h2

(
y, tn−1

1

))
.

This implies that (h1(k
n−1
1 , x), h1(k

n−1
1 , y)) ∈ ρ◦. In a same way, we can see

(h2(x, k
n−1
1 ), h2(y, k

n−1
1 )) ∈ ρ◦.

Let R be a regular relation on X contained in ρ. Then,
(x, y) ∈ ρ =⇒ ∀gn−1

1 , tn−1
1 ∈ G,

(
h2

(
x, tn−1

1

)
, h2

(
y, tn−1

1

))
∈ R

=⇒
(
h1

(
gn−1
1 , h2

(
x, tn−1

1

))
, h1

(
tn−1
1 , h2

(
y, tn−1

1

)))
∈ R.
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This implies that ρ◦ ∈ R. □

4. The Green’s Relations

In this section, we introduce the Green’s relations on a G-system and prove
some properties.

Let G be an n-ary semihypergroup and X a (G,G)-system. Then, we define
the relations L and R on the G-system G as follows:

(x, y) ∈ L⇐⇒ ∃ gn−1
1 , tn−1

1 ∈ G : h1
(
gn−1
1 , x

)
= y, h1(t

n−1
1 , y) = x.

(x, y) ∈ R⇐⇒ ∃ kn−1
1 , sn−1

1 ∈ G : h2(y, k
n−1
1 ) = x, h2(x, s

n−1
1 ) = y.

The following Proposition is a basic result of the regular relations on a
(G,G)-systems.

Proposition 4.1. Let G be an n-ary semihypergroup and X be a (G,G)-
system. Then, the relation R is a left regular relation and the relation L is a
right regular relation.

Proof. Suppose that (x, y) ∈ L and kn−1
1 ∈ G. Then,

h1
(
gn−1
1 , x

)
= y, h1(t

n−1
1 , y) = x,

where gn−1
1 , tn−1

1 ∈ G. We have the following equalities:

h2
(
x, kn−1

1

)
= h2

(
h1(t

n−1
1 , y), kn−1

1

)
= h1

(
tn−1
1 , h2(y, k

n−1
1 )

)
.

In a same way, we can see h2
(
y, kn−1

1

)
= h1

(
gn−1
1 , h2

(
y, kn−1

1

))
.

These results lead that L is a right regular relation. By using similar argu-
ments, we can show that R is a left regular relation. □

Corollary 4.2. Let G be a commutative n-ary semihypergroup. Then, R and
L are regular relations.

For the n-ary semihypergroups, we have the following proposition.

Proposition 4.3. Let G be an n-ary semihypergroup and X be a (G,G)-system.
Then, L ◦R = R ◦ L.

Proof. Suppose that G be an ary-semihypergroup and (x, y) ∈ L ◦ R. Then,
there exists z ∈ X such that (x, z) ∈ L and (z, y) ∈ R. Hence there exist
gn−1
1 , tn−1

1 , kn−1
1 , sn−1

1 ∈ G such that

h1
(
gn−1
1 , x

)
= z, h1

(
tn−1
1 , z

)
= x,

h2
(
z, kn−1

1

)
= y, h2(y, s

n−1
1 ) = z.
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Let w = h2
(
h1(t

n−1
1 , z), kn−1

1

)
. Then,

h2
(
w, sn−1

1

)
= h2

(
h2

(
h1(t

n−1
1 , z), kn−1

1

)
, sn−1

1

)
= h2

(
h1

(
tn−1
1 , h2

(
z, kn−1

1

))
, sn−1

1

)
= h2

(
h1

(
tn−1
1 , y

)
, sn−1

1

)
= h1

(
tn−1
1 , h2

(
y, sn−1

1

))
= h1

(
tn−1
1 , z

)
= z.

and
h2

(
x, kn−1

1

)
= h2

(
h1

(
tn−1
1 , z

)
, kn−1

1

)
= w.

Hence xRw. Moreover, we have

h1
(
tn−1
1 , y

)
= h1

(
tn−1
1 , h2

(
z, kn−1

1

))
= h2

(
h1

(
tn−1
1 , z

)
, kn−1

1

)
= w.

and
h1

(
gn−1
1 , w

)
= h1

(
gn−1
1 , h2

(
h1

(
tn−1
1 , z

)
, kn−1

1

))
= h1

(
gn−1
1 , h2

(
x, kn−1

1

))
= h2

(
h1

(
gn−1
1 , x

)
, kn−1

1

)
= h2

(
z, kn−1

1

)
= y.

Hence wLy. We deduce that (x, y) ∈ R ◦ L. This implies that L ◦ R ⊆ R ◦ L.
The reverse inclusion follows in a similar way. □

Let G be an n-ary semihypergroup and X be a (G,G)-system and D = L◦R.
We define a relation ζ on X as follows:

(x, y) ∈ ζ ⇐⇒ ∃ gn−1
1 , tn−1

1 , kn−1
1 , sn−1

1 ∈ G :

h1
(
gn−1
1 , h2

(
x, tn−1

1

))
= y, h1

(
kn−1
1 , h2

(
y, sn−1

1

))
= x.

It is easy to see that L ⊆ ζ and R ⊆ ζ. Hence D = L ◦R ⊆ ζ. It is easy to see
that D is the smallest equivalence containing L and R.

Finally, we state the main theorem of this paper.

Theorem 4.4. Let G be an n-ary semihypergroup, X be a (G,G)-system and
a, b ∈ X such that (a, b) ∈ R and gn−1

1 , tn−1
1 ∈ G such that h2

(
a, gn−1

1

)
= b

and h2
(
b, tn−1

1

)
= a. Then, there exist ρgn−1

1
: X −→ X and ρtn−1

1
: X −→ X

such that ρgn−1
1

|l(a) and ρtn−1
1

|l(b) are mutually inverse R-classes preserving
from L(a) onto L(b) and L(b) onto L(a).

Proof. Suppose that (a, b) ∈ R. Then, by the definition of R, there exists
gn−1
1 , tn−1

1 ∈ G such that h2
(
a, gn−1

1

)
= b and h2

(
b, tn−1

1

)
= a. We define

ρgn−1
1

: X −→ X

x 7−→ h2
(
x, gn−1

1

)
.
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Hence, ρgn−1
1

(a) = h2
(
a, gn−1

1

)
= b. Since L is regular, this implies that for

every x ∈ R(a),
h2

(
x, gn−1

1

)
L h2

(
a, gn−1

1

)
= b.

Hence ρgn−1
1

(L(a)) ⊆ L(b). In a similar way, we can define

ρtn−1
1

: X −→ X

x 7−→ h2
(
x, tn−1

1

)
and ρtn−1

1
(b) = h2

(
b, tn−1

1

)
= a. Thus, for every x ∈ L(a),

h2
(
x, tn−1

1

)
L h2

(
b, tn−1

1

)
= b.

This implies that ρtn−1
1

(L(b)) ⊆ L(a) and ρtn−1
1

◦ ρgn−1
1

: L(a) −→ L(a). Let
x ∈ L(a). Then, there exists un−1

1 ∈ G such that x = h1
(
un−1
1 , a

)
. Hence

ρtn−1
1

◦ ρgn−1
1

(x) = ρtn−1
1

(
h2

(
x, gn−1

1

))
= h2

(
h2

(
x, gn−1

1

)
, tn−1

1

)
= h2

(
h2

(
h1

(
un−1
1 , a

)
, gn−1

1

)
, tn−1

1

)
= h2

(
h1

(
un−1
1 , h2

(
a, gn−1

1

))
, tn−1

1

)
= h2

(
h1

(
un−1
1 , b

)
, tn−1

1

)
= h1

(
un−1
1 , h2

(
b, tn−1

1

))
= h1

(
un−1
1 , a

)
= x.

Thus, ρtn−1
1

◦ρgn−1
1

is the identity map and we can show in a closely similar way
that ρgn−1

1
◦ ρtn−1

1
is the identity map on L(b). This completes the proof. □

5. Conclusion

The Green’s relations provide the necessary tools for using similar arguments
on the monoid. When working in language theory using automata, several tools
comes naturally into play. A typical example is the use of the decomposition
of the graph of the automaton into strongly connected components, and the
use of the connected components for driving an induction in a proof. Since
the Green relation used in automata theory we introduced this concept on n-
ary semihypergroup. In future works, we consider and used of G-systems and
Green relation for solving automata related questions.
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